Skip to content
PUBLICATIONS

Our publications

Our research primarily focuses on the human musculoskeletal system, with an emphasis on tissue regeneration and implants, alongside other specialized fields. Additionally, we concentrate on the manufacturing, processing, and characterization of materials and surfaces. The results of our research activities are published in internationally recognized scientific journals.

Here, you will find a list of publications involving the RMS Foundation, organized by year of publication.

Flexible tab(Tab id: module_17122664564493)
    To utilize this module, drag and drop the "Grid options" to the desired section you want to transform into a tab content. Then, add the tab ID. For step-by-step instructions, please refer to: https://zeroheight.com/75eebd230/p/77144b-tab/b/9773fa.
    , Tab enable
    (Tab id: module_17122664564493; Tab name:  2025 )

    Publications 2025

    Workshop on the Latest Advances in Biomedical Applications of Octacalcium Phosphate

    Nicola Döbelin, Osamu Suzuki, Christophe Drouet, Jānis Ločs, Gerard Insley, Philip Procter
    Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2025; 113:e35500
    Abstract

    The first workshop on the “latest advances in biomedical applications of octacalcium phosphate (OCP)” was or­ganized as a satellite symposium to the Bioceramics33 conference in Solothurn, Switzerland, in October 2023. The event brought together leading researchers and industry representatives to present and discuss their latest ground­breaking research aimed at developing and com­mer­cial­izing advanced OCP-based bio­materials for bone regen­er­a­tion. The topics presented by the six invited speakers ranged from a fundamental understanding of the OCP crystal chemistry to advanced processing and characterization methods, functionalization, bio­mineralization, and com­mer­cial­ization. With this summary report, we are laying the foundation for a continuation of a series of work­shops on the subject of OCP bio­materials in order to promote the exchange between researchers and industry re­pre­sen­tatives and to drive forward the development and com­mer­cial­ization of new improved synthetic bone substitute materials.

    , Tab enable
    (Tab id: module_17122664564493; Tab name:  2024 )

    Publications 2024

    Correlation of cross-linking as measured by the trans-vinylene index and in vitro wear of polyethylene from various acetabular liner brands

    P. Wahl, R. Heuberger, A. Pascucci, T. Imwinkelried, M. Fürstner, N. Icken, M.Schläppi, R. Pourzal, E. Gautier
    Bone Joint Res 2024; 13(11): 682–693
    Abstract

    Aims
    Highly cross-linked polyethylene (HXLPE) greatly reduces wear in total hip arthroplasty, compared to conventional polyethylene (CPE). Cross-linking is commonly achieved by irradiation. This study aimed to compare the degree of cross-linking and in vitro wear rates across a cohort of retrieved and unused polyethylene cups/liners from various brands.

    Methods
    Polyethylene acetabular cups/liners were collected at one centre from 1 April 2021 to 30 April 2022. The trans-vinylene index (TVI) and oxidation index (OI) were determined by Fourier-transform infrared spectrometry. Wear was measured using a pin-on-disk test.

    Results
    A total of 47 specimens from ten brands were included. The TVI was independent of time in vivo. A linear correlation (R2 = 0.995) was observed between the old and current TVI standards, except for vitamin E-containing polyethylene. The absorbed irradiation dose calculated from the TVI corresponded to product specifications for all but two products. For one electron beam-irradiated HXLPE, a mean dose of 241% (SD 18%) of specifications was determined. For another, gamma-irradiated HXLPE, a mean 41% (SD 13%) of specifications was determined. Lower wear was observed for higher TVI.

    Conclusion
    The TVI is a reliable measure of the absorbed irradiation dose and does not alter over time in vivo. The products of various brands differ by manufacturing details and consequently cross-linking characteristics. Absorption and penetration of electron radiation and gamma radiation differ, potentially leading to higher degrees of cross-linking for electron radiation. There is a non-linear, inverse correlation between TVI and in vitro wear. The wear resistance of the HXLPE with low TVI was reduced and more comparable to CPE.

    The reactivity of α-tricalcium phosphate powders is affected by minute amounts of β-calcium pyrophosphate and by the synthesis temperature

    Marc Bohner, Fabrizio Bigolin, Isabelle Bohner, Thomas Imwinkelried, Yassine Maazouz, Pascal Michel, Christoph Stähli, Yves Viecelli, Nicola Döbelin
    Open Ceramics, Volume 19, September 2024, 100647
    Abstract

    α-tricalcium phosphate (α-TCP) is the most widespread raw material for hydraulic calcium phosphate cements (CPCs). CPCs are widely used in bone repair due to their injectability, setting ability, and osteoconductivity. This study investigated the reactivity of α-TCP powders, focusing on the impact of minor phase impurities, β-calcium pyrophosphate and hydroxyapatite, and the synthesis temperature. The α-TCP powders were synthesized via a solid-state reaction of calcium carbonate and anhydrous dicalcium phosphate, with varying Ca/P molar ratios (1.4850–1.5075) and synthesis temperatures (1175°C–1350 °C). Powders produced with a Ca/P molar ratio below 1.50 and synthesized at a temperature above the melting point of β-CPP (1296 °C) had a broader size distribution and a two to fourfold lower hydraulic reactivity. Conversely, a higher Ca/P molar ratio improved reactivity. The study underscores the importance of precise control over synthesis parameters to enhance the performance of α-TCP-based CPCs, offering insights for optimizing material design in biomedical applications.

    Silicon and oxygen isotope fractionation in a silicified carbonate rock

    Michael Tatzel, Marcus Oelze, Daniel A. Frick, Tommaso Di Rocco, Moritz Liesegang, Maria Stuff, Michael Wiedenbeck
    Chemical Geology, Issue 658, 2024, 122120
    Abstract

    Silicon isotope fractionation during silicification is poorly understood and impedes our ability to decipher paleoenvironmental conditions from Si isotopes in ancient cherts. To investigate isotope fractionation during silica-for‑carbonate replacement we analyzed the microscale Si and O isotope composition in different silica phases in a silicified zebra dolostone as well as their bulk δ18O and Δ’17O compositions. The subsequent replacement of carbonate layers is mimicked by decreasing δ18O and δ30Si. The textural relationship and magnitude of Si and O isotope fractionation is best explained by near-quantitative silica precipitation in an open system with finite Si. A Rayleigh model for silicification suggests positive Ɛ30/28Si during silicification, conforming with predictions for isotope distribution at chemical equilibrium from ab-initio models. Application of the modelled Ɛ30Si-T relationship yields silicification temperatures of approx. 50 C. To reconcile the δ18Ochert composition with these temperatures, the δ18O of the fluid must have been between − 2.5 and − 4 ‰, compositions for which the quartz phases fall close to the oxygen equilibrium fractionation line in three-isotope space. Diagenetic silica replacement appears to occur in O and Si isotopic equilibrium allowing reconstructions of temperatures of silicification from Si isotopes and derive the δ18O composition of the fluid – a highly desired value needed for accurate reconstructions of the temperature- and δ18O histories of the oceans.

    Inflammatory tissue response in human soft tissue is caused by a higher particle load near carbon fiber-reinforced PEEK compared to titanium plates

    E Fleischhacker, CM Sprecher, S Milz, MM Saller, R Wirz, R Zboray, A Parrilli, J Gleich, G Siebenbürger, W Böcker, B Ockert, T Helfen
    Acta Biomaterialia, 2024, online 16.04.2024
    Abstract

    Titanium as the leading implant material in locked plating is challenged by polymers such as carbon fiber-reinforced polyetheretherketone (CFR-PEEK), which became the focus of interest of researchers and manufacturers in recent years. However, data on human tissue response to these new implant materials are rare.

    Osteosynthesis plates and peri–implant soft tissue samples of 16 healed proximal humerus fractures were examined ( n = 8 CFR-PEEK, n = 8 titanium). Soft tissue was analyzed by immunohistochemistry and μCT. The entrapped foreign bodies were further examined for their material composition by FTIR. To gain insight into their origin and formation mechanism, explanted and new plates were evaluated by SEM, EDX, profilometry and HR-CT.

    In the peri–implant soft tissue of the CFR-PEEK plates, an inflammatory tissue reaction was detected. Tissues contained foreign bodies, which could be identified as tantalum wires, carbon fiber fragments and PEEK particles. Titanium particles were also found in the peri–implant soft tissue of the titanium plates but showed a less intense surrounding tissue inflammation in immunohistochemistry. The surface of explanted CFR-PEEK plates was rougher and showed exposed and broken carbon fibers as well as pro- truding and deformed tantalum wires, especially in used screw holes, whereas scratches were identified on the titanium plate surfaces.

    Particles were present in the peri–implant soft tissue neighboring both implant materials and could be clearly assigned to the plate material. Particles from both plate materials caused detectable tissue inflammation, with more inflammatory cells found in soft tissue over CFR-PEEK plates than over titanium plates.

    The colourful optical appearance of centric diatom fossil frustules with diagenetic nanocrystalline calcite fill

    Moritz Liesegang, Mohamed Ghobara, Sabine Matting, Richard Wirth
    Facies 70, 1 (2024)
    Abstract

    Biophotonic nanostructures rarely withstand fossilization processes occurring after burial over geologic time. Even more distinctive is a change introduced to the optical properties during diagenetic processes resulting in a different optical appearance. Here, we report and explain the optical appearance of centric diatom frustules obtained from ash-bearing carbonatecemented concretions on the Greifswalder Oie island (Pomeranian Bay, Germany, southern Baltic Sea). The ultrastructural and mineralogical analysis of the fossil frustules were carried out using electron microscopy techniques and were correlated to the macroscopic and microscopic optical appearance of the frustules before and after acid etching. The unique optical properties of the fossil diatoms were associated with diagenetic nanocrystalline calcite filling the frustules’ areolae. This fill created the macroscopic pale-yellow colour of many frustules, a microscopic iridescence probably associated with diffraction grating behaviour, and microscopic colour rings. The results highlight the unique permineralization process of diatom frustules and might be an addition to the emerging studies on frustule optics and photonics.

    Optimization of a tunable process for rapid production of calcium phosphate microparticles using a droplet-based microfluidic platform

    Y. Alaoui Selsouli, H. S. Rho, M. Eischen-Loges, V. P. Galván-Chacón, C. Stähli, Y. Viecelli, N. Döbelin, M. Bohner, Z. Tahmasebi Birgani, P. Habibović
    Front. Bioeng. Biotechnol. 12:1352184
    Abstract

    Calcium phosphate (CaP) biomaterials are amongst the most widely used synthetic bone graft substitutes, owing to their chemical similarities to the mineral part of bone matrix and off-the-shelf availability. However, their ability to regenerate bone in critical-sized bone defects has remained inferior to the gold standard autologous bone. Hence, there is a need for methods that can be employed to efficiently produce CaPs with different properties, enabling the screening and consequent fine-tuning of the properties of CaPs towards effective bone regeneration. To this end, we propose the use of droplet microfluidics for rapid production of a variety of CaP microparticles. Particularly, this study aims to optimize the steps of a droplet microfluidic-based production process, including droplet generation, in-droplet CaP synthesis, purification and sintering, in order to obtain a library of CaP microparticles with fine-tuned properties. The results showed that size-controlled, monodisperse water-in-oil microdroplets containing calcium- and phosphate-rich solutions can be produced using a flow-focusing droplet-generator microfluidic chip. We optimized synthesis protocols based on in-droplet mineralization to obtain a range of CaP microparticles without and with inorganic additives. This was achieved by adjusting synthesis parameters, such as precursor concentration, pH value, and aging time, and applying heat treatment. In addition, our results indicated that the synthesis and fabrication parameters of CaPs in this method can alter the microstructure and the degradation behavior of CaPs. Overall, the results highlight the potential of the droplet microfluidic platform for engineering CaP microparticle biomaterials with fine-tuned properties.

    Density and phase-purity of α-TCP obtained by sintering of nano-crystalline powder

    C. Stähli, A.J. Salinas, N. Döbelin, A. Testino, M. Bohner
    Ceramics International, Volume 50, Issue 6, 15 March 2024, Pages 8586-8593
    Abstract

    Dense and polished samples are sometimes used to test the in vitro biological response of biomaterials. However, their production can be challenging, for example for α-tricalcium phosphate (α-TCP), a commonly-used bone graft substitute. In this particular case, the ideal sintering conditions are in a temperature range close to the β-α-TCP phase transition (1125 °C). This phase transition is characterized by a 7 % volume increase which typically leads to the formation of cracks. Additionally, the production of a powder suitable for ceramic processing is difficult because α-TCP can only be produced via a thermal process. The initial aim of this study was to produce dense and polished α-TCP samples using an innovative method to produce nano-crystalline α-TCP. However, after observing the formation of β-TCP phase above the β-α-TCP phase transition (1125 °C), the focus of this study was shifted towards this unexpected phenomenon. Specifically, uniaxially compressed bulk samples were sintered at between 1160 and 1240 °C for different durations up to one week. The resulting density reached up to 95 % and was positively associated with green body density and sintering time, while being initially highest when sintered at the lowest temperature. A transient appearance of up to 6 wt% β-TCP was observed during sintering. The higher the sintering temperature was, the shorter and the smaller this transient appearance was. This behavior was attributed to the intrinsic pressure occurring within the material during sintering and which favoured the denser β-TCP phase.

    Release kinetics of growth factors loaded into β-TCP ceramics in an in vitro model

    M. Waldmann, M. Bohner, A. Baghnavi, B. Riedel, M. Seidenstuecker
    Frontiers in Bioengineering and Biotechnology 2024; 12: 1441547
    Abstract

    Introduction: β-TCP ceramics are bone replacement materials that have recently been tested as a drug delivery system that can potentially be applied to endogenous substances like growth factors found in blood platelets to facilitate positive attributes.

    Methods: In this work, we used flow chamber loading to load β-TCP dowels with blood suspensions of platelet-rich plasma (PRP), platelet-poor plasma (PPP), or buffy coat (BC) character. PRP and BC platelet counts were adjusted to the same level by dilution. Concentrations of TGF-β1, PDGF-AB, and IGF-1 from dowel-surrounding culture medium were subsequently determined using ELISA over 5 days. The influence of alginate was additionally tested to modify the release.

    Results: Concentrations of TGF-β1 and PDGF-AB increased and conclusively showed a release from platelets in PRP and BC compared to PPP. The alginate coating reduced the PDGF-AB release but did not reduce TGF-β1 and instead even increased TGF-β1 in the BC samples. IGF-1 concentrations were highest in PPP, suggesting circulating levels rather than platelet release as the driving factor. Alginate samples tended to have lower IGF-1 concentrations, but the difference was not shown to be significant.

    Discussion: The release of growth factors from different blood suspensions was successfully demonstrated for β-TCP as a drug delivery system with release patterns that correspond to PRP activation after Ca2+-triggered activation. The release pattern was partially modified by alginate coating.

    Awareness for artifacts in fluorescence microscopy of β-TCP

    M. Waldmann, M. Bohner, A. Baghnavi, B. Riedel, M. Seidenstuecker
    BMC Biotechnology, 17 (122), 2024
    Abstract

    Fluorescence analysis of β-TCP ceramics is often used to describe cells found on said ceramics. However, we found, to our knowledge, so far undescribed artifacts which might sometimes be hard to differentiate from cells due to shape and fluorescence behavior. We tried prolonged ultrasound washing as well as Technovit 9100 fixation to reduce these artifacts. While untreated dowels showed no reduction in artifacts no matter the further treatment, Technovit fixation reduced the artifacts with even further reduction achieved by mechanical cleaning. As a consequence, scientists working with these dowels and likely even other types should try to avoid creating false positive results by considering the existence of these artifacts, checking additional filters for unusual fluorescence and by reducing them by using Technovit fixation when possible.

    A model approach to show that monocytes can enter microporous β-TCP ceramics

    M. Waldmann, M. Bohner, L.-Q. Le, A. Baghnavi, B. Riedel, M. Seidenstuecker
    BMC Biotechnology, 24 (32), 2024
    Abstract

    β-TCP ceramics are versatile bone substitute materials and show many interactions with cells of the monocyte-macrophage-lineage. The possibility of monocytes entering microporous β-TCP ceramics has however not yet been researched. In this study, we used a model approach to investigate whether monocytes might enter β-TCP, providing a possible explanation for the origin of CD68-positive osteoclast-like giant cells found in earlier works.
    We used flow chambers to unidirectionally load BC, PRP, or PPP into slice models of either 2 mm or 6 mm β-TCP. Immunofluorescence for CD68 and live/dead staining was performed after the loading process.
    Our results show that monocytes were present in a relevant number of PRP and BC slices representing the inside of our 2 mm slice model and also present on the actual inside of our 6 mm model. For PPP, monocytes were not found beyond the surface in either model.
    Our results indicate the possibility of a new and so far neglected constituent in β-TCP degradation, perhaps causing the process of ceramic degradation also starting from inside the ceramics as opposed to the current understanding. We also demonstrated flow chambers as a possible new in vitro model for interactions between blood and β-TCP.

    Optimizing Parameters for Atom Probe Tomography Analysis of β-Tricalcium Phosphates

    S. Torkornoo, M. Bohner, I. McCarroll, B. Gault
    Microscopy and Microanalysis 2024
    Abstract

    The biocompatibility and resorption characteristics of β-tricalcium phosphate (β-TCP, Ca3(PO4)2) have made it a coveted alternative for bone grafts. However, the underlying mechanisms governing the biological interactions between β-tricalcium phosphate and osteoclasts remain elusive. It has been speculated that the composition at grain boundaries might vary and affect β-TCP resorption properties. Atom probe tomography (APT) offers a quantitative approach to assess the composition of the grain boundaries, and thus advance our comprehension of the biological responses within the microstructure and chemical composition at the nanoscale. The precise quantitative analysis of chemical composition remains a notable challenge in atom probe tomography, primarily due to the influence of measurement conditions on compositional accuracy. In this study, we investigated the impact of laser pulse energy on the composition of β-TCP using atom probe tomography, aiming for the most precise Ca:P ratio and consistent results across multiple analyses performed with different sets of analysis conditions and on two different instruments.

    Beschichtung unterstützt den kontrollierten Abbau von Magnesiumimplantaten

    T. Imwinkelried, R. Heuberger, L. Berger A. Rich, W. Rubin, J.F. Löffler
    Oberflächen POLYSURFACES 1/2024, 5
    Abstract

    Ein dauerhafter Verbleib von Implantaten im Körper kann zu Komplikationen führen. So werden Implantate zur Behandlung von Knochenbrüchen nach erfolgter Heilung oftmals wieder entnommen. Diese Entnahme bedingt eine Zweitoperation, die wiederum Risiken mit sich bringt. Im Gegen­satz zu inerten Implantaten aus Titan oder rost­freiem Stahl degradiert metallisches Magnesium im Körper. Idealerweise stützt das biodegradierbare Magnesium-implantat das betroffene Gewebe bis zur Heilung und baut sich anschliessend ohne Nebenwirkungen ab.
    Beim Kontakt mit Körperflüssigkeit setzt eine unbeschichtete, nicht passivierte Magnesium­ober­fläche Wasser­stoffgas frei. Durch eine geeignete Beschichtung lässt sich die anfängliche Gasfrei­setzung und Degradation verzögern.

    Gadolinium-based contrast agents and free gadolinium inhibit differentiation and activity of bone cell lineages

    F. Strunz, C. Stähli, J. Heverhagen, W. Hofstetter, R. Egli
    Investigative Radiology 59(7) 495-503, July 2024
    Abstract

    Objectives
    Administration of gadolinium-based contrast agents (GBCA) in magnetic resonance imaging results in the long-term retention of gadolinium (Gd) in tissues and organs, including the bone, and may affect their function and metabolism. This study aims to investigate the effects of Gd and GBCA on the proliferation/survival, differentiation, and function of bone cell lineages.

    Materials and Methods
    Primary murine osteoblasts (OB) and osteoclast progenitor cells (OPC) isolated from C57BL/6J mice were used to test the effects of Gd3+ (12.5–100 μM) and GBCA (100–2000 μM). Cultures were supplemented with the nonionic linear Gd-DTPA-BMA (gadodiamide), ionic linear Gd-DTPA (gadopentetic acid), and macrocyclic Gd-DOTA (gadoteric acid). Cell viability and differentiation were analyzed on days 4–6 of the culture. To assess the resorptive activity of osteoclasts, the cells were grown in OPC cultures and were seeded onto layers of amorphous calcium phosphate with incorporated Gd.

    Results
    Gd3+ did not affect OB viability, but differentiation was reduced dose-dependently up to 72.4% ± 6.2%–73.0% ± 13.2% (average ± SD) at 100 μM Gd3+ on days 4–6 of culture as compared with unexposed controls (P < 0.001). Exposure to GBCA had minor effects on OB viability with a dose-dependent reduction up to 23.3% ± 10.2% for Gd-DTPA-BMA at 2000 μM on day 5 (P < 0.001). In contrast, all 3 GBCA caused a dose-dependent reduction of differentiation up to 88.3% ± 5.2% for Gd-DTPA-BMA, 49.8% ± 16.0% for Gd-DTPA, and 23.1% ± 8.7% for Gd-DOTA at 2000 μM on day 5 (P < 0.001). In cultures of OPC, cell viability was not affected by Gd3+, whereas differentiation was decreased by 45.3% ± 9.8%–48.5% ± 15.8% at 100 μM Gd3+ on days 4–6 (P < 0.05). Exposure of OPC to GBCA resulted in a dose-dependent increase in cell viability of up to 34.1% ± 11.4% at 2000 μM on day 5 of culture (P < 0.001). However, differentiation of OPC cultures was reduced on day 5 by 24.2% ± 9.4% for Gd-DTPA-BMA, 47.1% ± 14.0% for Gd-DTPA, and 38.2% ± 10.0% for Gd-DOTA (P < 0.001). The dissolution of amorphous calcium phosphate by mature osteoclasts was reduced by 36.3% ± 5.3% upon incorporation of 4.3% Gd/Ca wt/wt (P < 0.001).

    Conclusions
    Gadolinium and GBCA inhibit differentiation and activity of bone cell lineages in vitro. Thus, Gd retention in bone tissue could potentially impair the physiological regulation of bone turnover on a cellular level, leading to pathological changes in bone metabolism.

    Classification of Progressive Wear on a Multi-Directional Pin-on-Disc Tribometer Simulating Conditions in Human Joints-UHMWPE against CoCrMo Using Acoustic Emission and Machine Learning

    P. Deshpande, K. Wasmer, T. Imwinkelried, R. Heuberger, M. Dreyer, B. Weisse, R. Crockett, V. Pandiyan
    Lubricants, 12 (2), 47 (2024)
    Abstract

    Human joint prostheses experience wear failure due to the complex interactions between Ultra-High-Molecular-Weight Polyethylene (UHMWPE) and Cobalt-Chromium-Molybdenum (CoCrMo). This study uses the wear classification to investigate the gradual and progressive abrasive wear mechanisms in UHMWPE. Pin-on-disc tests were conducted under simulated in vivo conditions, monitoring wear using Acoustic Emission (AE). Two Machine Learning (ML) frameworks were employed for wear classification: manual feature extraction with ML classifiers and a contrastive learning-based Convolutional Neural Network (CNN) with ML classifiers. The CNN-based feature extraction approach achieved superior classification performance (94% to 96%) compared to manual feature extraction (81% to 89%). The ML techniques enable accurate wear classification, aiding in understanding surface states and early failure detection. Real-time monitoring using AE sensors shows promise for interventions and improving prosthetic joint design.

    Bisphosphonates do not affect healing of a critical-size defect in estrogen-deficient mice

    F. Strunz, S. Gentil-Perret, M. Siegrist, M. Bohner, N. Saulacic, W. Hofstetter
    Bone Reports, 20, 101739 (2024)
    Abstract
    Bisphosphonates (BP) are anti-resorptive drugs that are widely used to prevent bone loss in osteoporosis. Since inhibition of bone resorption will cause a decrease in bone formation through a process called coupling, it is hypothesized that extended treatment protocols may impair bone healing. In this study, β-tri‑calcium-phosphate (βTCP) ceramics were inserted into critical-size long bone defects in estrogen-deficient mice under BP therapy. The study assessed the benefits of coating the ceramics with Bone Morphogenetic Protein-2 (BMP2) and an engineered BMP2 analogue (L51P) that inactivates BMP antagonists on the healing process, implant resorption, and bone formation.
    Female NMRI mice (11–12 weeks of age) were ovariectomized (OVX) or sham operated. Eight weeks later, after the manifestation of ovariectomy-induced osteoporotic bone changes, BP therapy with Alendronate (ALN) was commenced. After another five weeks, a femoral critical-size defect was generated, rigidly fixed, and βTCP-cylinders loaded with 0.25 μg or 2.5 μg BMP2, 2.5 μg L51P, and 0.25 μg BMP2/2.5 μg L51P, respectively, were inserted. Unloaded βTCP-cylinders were used as controls. Femora were collected six and twelve weeks post-implantation.
    Histological and micro-computer tomography (MicroCT) evaluation revealed that insertion of cylinders coated with 2.5 μg BMP2 accelerated fracture repair and induced significant bone formation compared to controls (unloaded cylinders or coated with 2.5 μg L51P, 0.25 μg BMP2) already six weeks post-implantation, independent of estrogen-deficiency and BP therapy. The simultaneous administration of BMP2 and L51P (0.25 μg BMP2/2.5 μg L51P) did not promote fracture healing six and twelve weeks post-implantation. Moreover, new bone formation within the critical-size defect was directly linked to the removal of the βTCP-implant in all experimental groups. No evidence was found that long-term therapy with ALN impaired the resorption of the implanted graft. However, osteoclast transcriptom signature was elevated in sham and OVX animals upon treatment with BP, with transcript levels being higher at six weeks than at twelve weeks post-surgery. Furthermore, the transcriptome profile of the developing repair tissue confirmed an accelerated repair process in animals treated with 2.5 μg BMP2 implants. L51P did not increase the bioefficacy of BMP2 in the applied defect model.
    The present study provides evidence that continuous administration of BP does not inhibit implant resorption and does not alter the kinetics of the healing process of critical-size long bone defects. Furthermore, the BMP2 variant L51P did not enhance the bioefficacy of BMP2 when applied simultaneously to the femoral critical-size defect in sham and OVX mice.

    Osteoinduction and osteoimmunology: Emerging concepts

    R. Miron, M. Bohner, Y. Zhang, D. Bosshardt
    Periodontol 2000. 2024; 94: 9-26
    Abstract
    The recognition and importance of immune cells during bone regeneration, including around bone biomaterials, has led to the development of an entire field termed “osteoimmunology,” which focuses on the connection and interplay between the skeletal system and immune cells. Most studies have focused on the “osteogenic” capacity of various types of bone biomaterials, and much less focus has been placed on immune cells despite being the first cell type in contact with implantable devices. Thus, the amount of literature generated to date on this topic makes it challenging to extract needed information. This review article serves as a guide highlighting advancements made in the field of osteo­immunology emphasizing the role of the osteoimmunomodulatory properties of biomaterials and their impact on osteoinduction. First, the various immune cell types involved in bone biomaterial integration are discussed, including the prominent role of osteal macrophages (OsteoMacs) during bone regeneration. Thereafter, key biomaterial properties, including topography, wettability, surface charge, and adsorption of cytokines, growth factors, ions, and other bioactive molecules, are discussed in terms of their impact on immune responses. These findings highlight and recognize the importance of the immune system and osteo­immunology, leading to a shift in the traditional models used to understand and evaluate biomaterials for bone regeneration.
    , Tab enable
    (Tab id: module_17122664564493; Tab name:  2023 )

    Publications 2023

    Influence of the sintering atmosphere on the physico-chemical properties and the osteoclastic resorption of β-tricalcium phosphate cylinders

    B. Le Gars Santoni, L. Niggli, S. Dolder, O. Loeffel, G. Sblendorio, Y. Maazouz, D. Alexander, R. Heuberger, C. Stähli, N. Döbelin, P. Bowen, W. Hofstetter, M. Bohner
    Acta Biomaterialia 169, 566-578 (2023)
    Abstract

    One of the most widely used materials for bone graft substitution is β‐Tricalcium phosphate (β‐TCP; β-Ca3(PO4)2). β-TCP is typically produced by sintering in air or vacuum. During this process, evaporation of phosphorus (P) species occurs, leading to the formation of a calcium-rich alkaline layer. It was recently shown that the evaporation of P species could be prevented by co-sintering β-TCP with dicalcium phosphate (DCPA; CaHPO4; mineral name: monetite). The aim of this study was to see how a change of sintering atmosphere could affect the physico-chemical and biological properties of β-TCP. For this purpose, three experimental groups were considered: β‐TCP cylinders sintered in air and subsequently polished to remove the surface layer (control group); the same polished cylinders after subsequent annealing at 500 °C in air to generate a calcium-rich alkaline layer (annealed group); and finally, β‐TCP cylinders sintered in a monetite-rich atmosphere and subsequently polished (monetite group). XPS analysis confirmed that cylinders from the annealed group had a significantly higher Ca/P molar ratio at their surface than that of the control group while this ratio was significantly lower for the cylinders from the monetite group. Sintering β‐TCP in the monetite-rich atmosphere significantly reduced the grain size and increased the density. Changes of surface composition affected the activity of osteoclasts seeded onto the surfaces, since annealed β-TCP cylinders were significantly less resorbed than β-TCP cylinders sintered in the monetite-rich atmosphere. This suggests that an increase of the surface Ca/P molar ratio leads to a decrease of osteoclastic resorption.

    Statement of Significance
    Minimal changes of surface and bulk (< 1%) composition have major effects on the ability of osteoclasts to resorb β-tricalcium phosphate (β-TCP), one of the most widely used ceramics for bone substitution. The results presented in this study are thus important for the calcium phosphate community because (i) β-TCP may have up to 5% impurities according to ISO and ASTM standards and still be considered to be “pure β-TCP”, (ii) β-TCP surface properties are generally not considered during biocompatibility assessment and (iii) a rationale can be proposed to explain the various inconsistencies reported in the literature on the biological properties of β-TCP.

    The history of the development of the regular straight stem in hip arthroplasty

    H. Wellauer, R. Heuberger, E. Gautier, M. Tannast, H. Steinke, P. Wahl
    EFORT Open Reviews, 8 (7), 548 - 560 (2023)
    Abstract
    • Since the middle of the 20th century, total hip arthroplasty has become a very successful treatment for all end-stage diseases of the hip joint. Charnley solved with his low frictional torque arthroplasty the problem of wear and friction with the introduction of a new bearing couple and the reduction of the head size, which set the prerequisite for the further development of stem design.
    • This narrative review presents the major developments of regular straight stems in hip arthroplasty. It does not only provide an overview of the history but also assembles the generally scarce documentation available regarding the rationale of developments and illustrates often-unsuspected links.
    • Charnley's success is based on successfully solving the issue of fixation of the prosthetic components to the bone, using bone cement made of polymethyl-methacrylate. In the field of cemented anchorage of the stem, two principles showing good long-term revision rates emerged over the years: the force-closed and the shape-closed principles.
    • The non-cemented anchorage bases on prosthesis models ensure enough primary stability for osteointegration of the implant to occur. For bone to grow onto the surface, not only sufficient primary stability is required but also a suitable surface structure together with a biocompatible prosthetic material is also necessary.

    Composite material consisting of microporous beta-TCP ceramic and alginate-dialdehyde-gelatin for controlled dual release of clindamycin and bone morphogenetic protein 2

    L. Ritschl, P. Schilling, A. Wittmer, M. Bohner, A. Bernstein, H. Schmal, M. Seidenstuecker
    J Mater Sci: Mater Med 34, 39 (2023)
    Abstract
    The aim of this study was to produce a composite of microporous β-TCP filled with alginate-gelatin crosslinked hydrogel, clindamycin and bone morphogenetic protein (BMP-2) to prolong the drug-release behaviour for up to 28 days. The most promising alginate-di-aldehyde(ADA)-gelatin gel for drug release from microcapsules was used to fill microporous β-TCP ceramics under directional flow in a special loading chamber. Dual release of clindamycin and BMP-2 was measured on days 1, 2, 3, 6, 9, 14, 21 and 28 by high performance liquid chromatography (HPLC) and enzyme-linked immunosorbent assay (ELISA). After release, the microbial efficacy of the clindamycin was checked and the biocompatibility of the composite was tested in cell culture. Clindamycin and the model substance FITC-protein A were released from microcapsules over 28 days. The clindamycin burst release was 43 ± 1%. For the loaded ceramics, a clindamycin release above the minimal inhibitory concentration (MIC) until day 9 and a burst release of 90.56 ± 2.96% were detected. BMP-2 was released from the loaded ceramics in low concentrations over 28 days. The release of active substances from β-TCP and hydrogel have already been extensively studied. Directional flow loading is a special procedure in which the ceramic could act as a stabilizer in the bone and, as a biodegradable system, enables a single-stage surgical procedure. Whether ADA-gelatin gel is suitable for this procedure as a more biodegradable alternative to pure alginate or whether a dual release is possible in this composite has not yet been investigated.

    Towards an improved understanding of the β-TCP crystal structure by means of “checkerboard” atomistic simulations

    Gabrielle A. Sblendorio, Bastien Le Gars Santoni, Duncan T.L. Alexander, Paul Bowen, Marc Bohner, Nicola Döbelin
    Journal of the European Ceramic Society, Volume 43, Issue 8, July 2023, Pages 3746-3754
    Abstract

    The large variability of biological responses to β-TCP implants reported in the literature could possibly be related to subtle differences in the β-TCP crystal structure. The structure contains one partially occupied site Ca(4). In order to better understand the ordering of this site, 12 pairs of unit cells with different Ca(4) site occupancies were combined in different checkerboard patterns with an average occupancy of 3. Atomistic simulations were conducted to identify the lowest energy configurations. The previously published low energy configuration is not the most stable one when considering a larger supercell. Plotting the 662 simulation outputs by lattice parameters a or c versus relative lattice energy revealed clusters of high density which are composed of configurations with predominant motifs of Ca(4) occupancy. The tools introduced in this study can be applied in future simulation studies to better explain the Ca(4) site occupancy in the β-TCP crystal structure.

    Impact of polyethylene glenoid cementation technique on cement mantle integrity and stability after cyclic loading: a computed tomography and biomechanical study

    Philip Kasten, Nico Maximilian Jandl, Felix Zeifang, Frank Dallmann, Stefan Jakobs, Kevin Stalder, Andreas Niemeier
    Journal of Shoulder and Elbow Surgery, Volume 43, 2023 Feb;32(2):383-391
    Abstract

    Background: There are no generally accepted guidelines for polyethylene (PE) glenoid component cementation techniques. In particular, it is not known whether the backside of a PE glenoid should be fully or partially cemented – or not cemented at all. We hypothesized that cementing techniques would have an impact on cement mantle volume and integrity, as well as biomechanical stability, measured as micromotion under cyclic loading.

    Methods: To address our hypothesis, 3 different cementation techniques using a single 2-peg PE glenoid design with polyurethane foam were compared regarding (1) the quality and quantity of the cement mantle and (2) bio­mechanical stability after cyclic loading in vitro. Eight identically cemented glenoids per group were used. Group A underwent cement application only into the peg holes, group B received additional complete cement mantle application on the backside of the glenoid, and group C received the same treatment as group B but with additional standardized drill holes in the surface of the glenoid bone for extra cement interdigitation. All glenoids underwent cyclic edge loading by 105 cycles according to ASTM F2028-14. Before and after loading, cement mantle evaluation was performed by XtremeCT and biomechanical strength and loosening were evaluated by measuring the relative motion of the implants.

    Results: The cement mantle at the back of the implant was incomplete in group A as compared with groups B and C, in which the complete PE backside was covered with a homogeneous cement mantle. The cement mantle was thickest in group C, followed by group B (P = .006) and group A (P <.001). We did not detect any breakage of the cement mantle in any of the 3 groups after testing.

    , Tab enable
    (Tab id: module_17122664564493; Tab name:  2022 )

    Publications 2022

    Reduced thrombogenicity of surface-treated Nitinol implants steered by altered protein adsorption

    K. Gegenschatz-Schmid, S. Buzzi, J. Grossmann, B. Roschitzki, R. Urbanet, R. Heuberger, D. Glück, A. Zucker, M. Ehrbar
    Acta Biomaterialia, 2022, 137, pp. 331-345
    Abstract

    Blood-contacting medical implants made of Nitinol and other titanium alloys, such as neurovascular flow diverters and peripheral stents, have the disadvantage of being highly thrombogenic. This makes the use of systemic (dual) anti-platelet/anticoagulant therapies inevitable with related risks of device thrombosis, bleeding and other complications. Meeting the urgent clinical demand for a less thrombogenic Nitinol surface, we describe here a simple treatment of standard, commercially available Nitinol that renders its surface ultra-hydrophilic and functionalized with phosphate ions. The efficacy of this treatment was assessed by comparing standard and surface-treated Nitinol disks and braids, equivalent to flow diverters. Static and dynamic (Chandler loop) blood incubation tests showed a drastic reduction of thrombus formation on treated devices. Surface chemistry and proteomic analysis indicated a key role of phosphate and calcium ions in steering blood protein adsorption and avoiding coagulation cascade activation and platelet adhesion. A good endothelialization of the surface confirmed the biocompatibility of the treated surface.

    Anomalous Wear Behavior of UHMWPE During Sliding Against CoCrMo Under Varying Cross-Shear and Contact Pressure

    M. J. Dreyer, W. R. Taylor, K. Wasmer, T. Imwinkelried, R. Heuberger, B. Weisse, R. Crockett
    Tribology Letters volume 70, 119 (2022)
    Abstract

    Wear of ultra-high-molecular weight polyethylene (UHMWPE) in joint implant applications has been shown to increase with cross-shear (CS, i.e., multidirectional sliding) but decrease with higher contact pressure (CP). Moreover, structural changes, resulting in protrusions, are known to occur to the surface of the pin following multidirectional sliding. However, these phenomena are not yet fully understood. In this study, we simultaneously varied CP and CS to derive an empirical formula for the wear factor as a function of these parameters. The wear factor increased when going from unidirectional sliding to multidirectional sliding but decreased with increasing CP, as has been previously observed. Following these tests, the protrusions on the pin surface were chemically and mechanically characterized to gain insights into both their origin and influence on wear behavior. Micro-FT-IR confirmed that the structures consist of polyethylene, rather than adsorbed, denatured proteins. It also allowed the crystallinity of both the protrusions and unaffected UHMWPE to be estimated, showing a strong positive correlation with the hardness of these different areas on the surface. Time-of-flight secondary-ion mass spectrometry was used to probe the chemistry of the surface and near-surface region and indicated the presence of contamination from the test fluid within the structure. This suggests that the protrusions are formed by the folding of UHMWPE following plastic deformation. It is also suggested that the higher hardness of the protrusions affords some protection of the surface, leading to the observed anomalous behavior, whereby wear increases with decreasing CP.

    A free and open-source solution for Rietveld refinement of XRD data from the CheMin instrument onboard the Mars rover Curiosity

    N. Döbelin, R. Archer, V. Tu
    Elsevier, Planetary and Space Science, Volume 224, December 2022, 105596
    Abstract

    The Rietveld refinement software Profex is an open-source and platform-independent solution for the processing of powder X-ray diffraction datasets. It is based on the BGMN refinement kernel and uses a description of the diffractometer configuration to determine the instrument-related peak profile. In this article we present a Profex configuration file for the Chemistry and Mineralogy (CheMin) X-ray diffractometer (XRD), which is on-board the Mars Science Laboratory rover Curiosity. For the past decade, Curiosity has been on a mission on Mars to find out whether the planet was once habitable for microbial life. The CheMin XRD determines the mineralogical phases and abundances of Martian soil and rocks in Gale Crater, Mars. Since its arrival on Mars in 2012, Curiosity has analyzed powdered soil and rock samples with the CheMin instrument and transmitting the raw XRD data acquired back to Earth.

    Adaptations of Profex to work seamlessly with CheMin XRD datasets involved creating a new configuration file for the CheMin instrument, as well as adding the Mars Mineral Compendium, a compilation of structural models specifically selected for the analysis of Mars sedimentary soil and rock samples, to Profex. Using example refinements, we demonstrate that this software solution is well suited for quantitative analysis of CheMin XRD datasets.

    Early failure of a highly cross-linked polyethylene inlay after total hip arthroplasty probably due to insufficient irradiation

    P. Wahl, C. Mossu-Haas, C. Dommann-Scherrer, K. Wei, L. Eschbach, P. Gehr, E. Benninger
    SAGE journals, October 25, 2022
    Abstract

    Highly cross-linked polyethylene (XLPE) is a major advance in total hip arthroplasty (THA), as it suffers from less wear and thus is associated with lower revision rates than standard ultra-high molecular weight polyethylene. Early failures are reported rarely, and associated with specific design or manufacturing issues. We report a case requiring early revision due to adverse reaction to polyethylene particles. Investigations identified insufficient irradiation as the most probable cause of failure. Here are reported the features of a clinical case with determination of the material properties of the retrieved XLPE liner and establishment of the appropriate calibration curves as reference. Periprosthetic joint infection could be ruled out with appropriate sampling as cause for the inflammatory periarticular tumour. Histology identified a massive macrophagic reaction to micrometric polyethylene particles. No component malposition was present, nor any third-body wear. The trans-vinylene index (TVI) indicated insufficient and potentially detrimental irradiation of the polyethylene, while gel content, crystallinity, melting temperature and oxidation index remained within expected ranges. Histologically proven failure of a XLPE THA liner was identifiable despite correct implantation of the components. The cause of failure most probably was an inadequate irradiation, as indicated by determination of the TVI. This case underscores the importance of histologic workup even in aseptic revisions, and of detailed analysis of retrievals. The calibration curves provided are essential for analysis of other retrievals.

    Effect of minor amounts of β-calcium pyrophosphate and hydroxy­apatite on the physico-chemical properties and osteoclastic resorption of β-tricalcium phosphate cylinders

    B. Le Gars Santoni, L. Niggli, S. Dolder, O. Loeffel, G.A. Sblendorio, R. Heuberger, Y. Maazouz, C. Stähli, N. Döbelin, P. Bowen, W. Hofstetter, M. Bohner
    Bioactive Materials, Volume 10, April 2022, Pages 222-235
    Abstract

    β-Tricalcium Phosphate (β-TCP), one of the most used bone graft substitutes, may contain up to 5 wt% foreign phase according to standards. Typical foreign phases include β-calcium pyrophosphate (β-CPP) and hydroxyapatite (HA). Currently, the effect of small amounts of impurities on β-TCP resorption is unknown. This is surprising since pyrophosphate is a very potent osteoclast inhibitor. The main aim of this study was to assess the effect of small β-CPP fractions (<1 wt%) on the in vitro osteoclastic resorption of β-TCP. A minor aim was to examine the effect of β-CPP and HA impurities on the physico-chemical properties of β-TCP powders and sintered cylinders. Twenty-six batches of β-TCP powder were produced with a Ca/P molar ratio varying between 1.440 and 1.550. Fifteen were further processed to obtain dense and polished β-TCP cylinders. Finally, six of them, with a Ca/P molar ratio varying between 1.496 (1 wt% β-CPP) and 1.502 (1 wt% HA), were incubated in the presence of osteoclasts. Resorption was quantified by white-light interferometry. Osteoclastic resorption was significantly inhibited by β-CPP fraction in a linear manner. The presence of 1% β-CPP reduced β-TCP resorption by 40%, which underlines the importance of controlling β-CPP content when assessing β-TCP biological performance.

    Evaluation of imaging setups for quantitative phase contrast nanoCT of mineralized biomaterials

    J.-P. Suuronen, B. Hesse, M. Langer, Marc Bohner, J. Villanova
    J. Synchrotron Rad. (2022). 29, 843-852
    Abstract

    X-ray nano-tomography with phase contrast (nanoCT) using synchrotron radiation is a powerful tool to non-destructively investigate 3D material properties at the nanoscale. In large bone lesions, such as severe bone fractures, bone cancer or other diseases, bone grafts substituting the lost bone might be necessary. Such grafts can be of biological origin or be composed of a synthetic bone substitute. The long-term functioning of artificial bone substitutes depends on many factors. Synchrotron nanoCT imaging has great potential to contribute to further the understanding of integration of implants into bone tissue by imaging the spatial interaction between bone tissue and implant, and by accessing the interface between implant material and bone tissue. With this aim, a methodology for evaluating the image quality is presented for in-line phase contrast nanoCT images of bone scaffold samples. A PMMA-embedded tricalcium phosphate scaffold was used with both a closed and an open porosity structure and bone ingrowths as a representative system of three known materials. Parameters such as spatial resolution and signal-to-noise ratio were extracted and used to explore and quantitatively compare the effects of implementation choices in the imaging setup, such as camera technology and imaging energy, on the resulting image quality. Increasing the X-ray energy from 17.5 keV to 29.6 keV leads to a notable improvement in image quality regardless of the camera technology used, with the two tested camera setups performing at a comparable level when the recorded intensity was kept constant.

    Sustained local ionic homeostatic imbalance caused by calcification modulates inflammation to trigger heterotopic ossification

    Marc Bohner, Yassine Maazouz, Maria-Pau Ginebra, Pamela Habibovic, Jonathan G. Schoenecker, Howard Seeherman, Jeroen J.J.P. van den Beucken, Frank Witte
    Acta Biomaterialia, Available online 6 April 2022
    Abstract

    Heterotopic ossification (HO) is a condition triggered by an injury leading to the formation of mature lamellar bone in extraskeletal soft tissues. Despite being a frequent complication of orthopedic and trauma surgery, brain and spinal injury, the etiology of HO is poorly understood. The aim of this study is to evaluate the hypothesis that a sustained local ionic homeostatic imbalance (SLIHI) created by mineral formation during tissue calcification modulates inflammation to trigger HO. This evaluation also considers the role SLIHI could play for the design of cell-free, drug-free osteoinductive bone graft substitutes. The evaluation contains five main sections. The first section defines relevant concepts in the context of HO and provides a summary of proposed causes of HO. The second section starts with a detailed analysis of the occurrence and involvement of calcification in HO. It is followed by an explanation of the causes of calcification and its consequences. This allows to speculate on the potential chemical modulators of inflammation and triggers of HO. The end of this second section is devoted to in vitro mineralization tests used to predict the ectopic potential of materials. The third section reviews the biological cascade of events occurring during pathological and material-induced HO, and attempts to propose a quantitative timeline of HO formation. The fourth section looks at potential ways to control HO formation, either acting on SLIHI or on inflammation. Chemical, physical, and drug-based approaches are considered. Finally, the evaluation finishes with a critical assessment of the definition of osteoinduction.

    A human bone infection organ model for biomaterial research

    Theodor Kuehling, Pia Schilling, Anke Bernstein, Hermann O. Mayr, Annerose Serr, Annette Wittmer, Marc Bohner, Michael Seidenstuecker
    Acta Biomaterialia, Volume 144, May 2022, Pages 230-241
    Abstract

    The aim of this work was to establish an organ model for staphylococcal infection of human bone samples and to investigate the influence and efficacy of a microporous β-tricalcium phosphate ceramic (β-TCP, RMS Foundation) loaded with hydrogels (alginate, alginate-di-aldehyde (ADA)-gelatin) and clindamycin on infected human bone tissue over a period of 28 days. For this purpose, human tibia plateaus, collected during total knee replacement surgery, were used as a source of bone material. Samples were infected with S. aureus ATCC29213 and treated with differently loaded β-TCP composites (alginate +/- clindamycin, ADA-gelatin +/- clindamycin, unloaded). The loading of the composites was carried out by means of a flow chamber. The infection was observed for 28 days, quantifying bacteria in the medium and the osseus material on day 1, 7, 14, 21 and 28. All samples were histologically processed for bone vitality evaluation. Bone infection could be consistently performed within the organ model. In addition, a strong reduction in bacterial counts was recorded in the groups treated with ADA-gelatin + clindamycin and alginate + clindamycin, while the bacterial count in the control groups remained constant. No significant differences between groups could be observed in the number of lacunae filled with osteocytes suggesting no differences in bone vitality among groups. In an ex-vivo human bone infection model, over a period of 28 days bacterial growth could be reduced by treatment with ADA-Gel + CLI and ALG + CLI -releasing β-TCP composites. This could be relevant for its clinical use. Further work will be necessary to improve the loading of β-TCP and the bone infection organ model itself.

    , Tab enable
    (Tab id: module_17122664564493; Tab name:  2021 )

    Publications 2021

    Bone-on-a-Chip: A Microscale 3D Biomimetic Model to Study Bone Regeneration

    Víctor Pablo Galván-Chacón, Athanasia Zampouka, Bernhard Hesse, Marc Bohner, Pamela Habibovic, David Barata
    Adv. Eng. Mater.2022, 2101467
    Abstract

    Organ-on-chip models, developed using microengineering and microfluidic technologies, aim to recreate physiological-like microenvironments of organs or tissues as a tool to study (patho)physiological processes in vitro. On-chip models of bone are relevant for the study of bone physiology, diseases and regenerative processes. While a few bone-on-a-chip models exist, recapitulating the cellular components of bone, these models do not incorporate the chemical and structural characteristics of bone tissue. Herein, the development of a bone-on-a-chip platform is reported that comprises a 3D structural model of bone. To build the platform, first, a 3D model of bone is produced in a polymer using two-photon polymerization (2PP) from a 3D nano-computed tomography scan of trabecular bone. This 3D model is then coated with a layer of bone mineral-like calcium phosphate. Finally, the 3D bone model is integrated inside a microfluidic device suitable for cell culture. Human mesenchymal stromal cells, cultured inside the platform for up to 21 days, show high viability and extensive production of extracellular matrix, rich in collagen. This biomimetic bone-on-a-chip platform can contribute to a better understanding of the processes related to bone formation and remodeling, which in turn can be used for the development of bone regeneration strategies.

    Cell-free, quantitative mineralization measurements as a proxy to identify osteoinductive bone graft substitutes

    Yassine Maazouz, Giacomo Chizzola, Nicola Döbelin, Marc Bohner
    Biomaterials, Volume 275, August 2021, 120912
    Abstract

    Titanium as the leading implant material in locked plating is challenged by polymers such as carbon fiber-reinforced polyetheretherketone (CFR-PEEK), which became the focus of interest of researchers and manufacturers in recent years. However, data on human tissue response to these new implant materials are rare.

    Osteosynthesis plates and peri–implant soft tissue samples of 16 healed proximal humerus fractures were examined ( n = 8 CFR-PEEK, n = 8 titanium). Soft tissue was analyzed by immunohistochemistry and μCT. The entrapped foreign bodies were further examined for their material composition by FTIR. To gain insight into their origin and formation mechanism, explanted and new plates were evaluated by SEM, EDX, profilometry and HR-CT.

    In the peri–implant soft tissue of the CFR-PEEK plates, an inflammatory tissue reaction was detected. Tissues contained foreign bodies, which could be identified as tantalum wires, carbon fiber fragments and PEEK particles. Titanium particles were also found in the peri–implant soft tissue of the titanium plates but showed a less intense surrounding tissue inflammation in immunohistochemistry. The surface of explanted CFR-PEEK plates was rougher and showed exposed and broken carbon fibers as well as pro- truding and deformed tantalum wires, especially in used screw holes, whereas scratches were identified on the titanium plate surfaces.

    Particles were present in the peri–implant soft tissue neighboring both implant materials and could be clearly assigned to the plate material. Particles from both plate materials caused detectable tissue inflammation, with more inflammatory cells found in soft tissue over CFR-PEEK plates than over titanium plates.

    Chemically pure β-tricalcium phosphate powders: Evidence of two crystal structures

    B. Le Gars Santoni, L. Niggli, G.A. Sblendorio, D.T.L. Alexander, C. Stähli, P. Bowen, N. Döbelin, M. Bohner
    Journal of the European Ceramic Society, Volume 41, Issue 2, February 2021, Pages 1683-1694
    Abstract

    The question whether β‐tricalcium phosphate (β‐TCP) can form a solid solution with β-calcium pyrophosphate (β-CPP) and/or hydroxyapatite (HA) has still not been solved. For this reason, wet-chemically synthesized β-TCP powders with only 20 ppm Sr (among 43 tested elements) and with different HA and β-CPP contents, or in other words Ca/P molar ratios, were used. The graphical relationship between these various Ca/P molar ratios determined by X-ray diffraction and by inductively-coupled plasma mass spectrometry showed no discontinuity, indicating the absence of a solid solution between β‐TCP and β-CPP or HA. Analysis of the β‐TCP lattice parameters as a function of the Ca/P molar ratio revealed a discontinuity at a Ca/P molar ratio of 1.500 and a maximum microstrain. These results indicated that at least two β‐TCP structures co-existed, with variable mixing ratios depending on the Ca/P molar ratio, and with a distinct jump at a Ca/P molar ratio of 1.500.

    Thermal treatment at 500 °C significantly reduces the reaction to irregular tricalcium phosphate granules as foreign bodies: An in vivo study

    Sarah Al-Maawi, Mike Barbeck, Carlos Herrera-Vizcaínoa, Rainer Egli, Robert Sadera, Charles James Kirkpatrick , Marc Bohner, Shahram Ghanaati
    Acta Biomaterialia, Volume 121, February 2021, Pages 621-636
    Abstract

    Evaporation of phosphate species during thermal treatment (> 400 °C) of calcium phosphates leads to the formation of an alkaline layer on their surface. The aim of this study was to evaluate the hypothesis that the biological response of thermally treated calcium phosphates is modified by the presence of such an alkaline layer on their surface. For this purpose, 0.125–0.180 mm α- and β-tricalcium phosphate (TCP) granules were obtained by crushing and size classification, with some being subjected to thermal treatment at 500 °C. The four types of granules (α-TCP, β-TCP, α-TCP-500 °C, and β-TCP-500 °C) were implanted subcutaneously and orthotopically in rats. Sham operations served as control.

    Subcutaneously, α-TCP and β-TCP induced significantly more multinucleated giant cells (MNGCs) than calcined granules. Most of the induced MNGCs were TRAP-negative, CD-68 positive and cathepsin K-negative, reflecting a typical indication of a reaction with a foreign body. The vessel density was significantly higher in the α-TCP and β-TCP groups than it was in the α-TCP-500 °C and β-TCP-500 °C groups. In the femur model, β-TCP-500 °C induced significantly more new bone formation than that induced by β-TCP. The granule size was also significantly larger in the β-TCP-500 °C group, making it more resistant to degradation than β-TCP. The MNGC density was higher in the α-TCP and β-TCP groups than in the α-TCP-500 °C and β-TCP-500 °C groups, including cathepsin-positive, CD-68 positive, TRAP-positive and TRAP-negative MNGCs.

    In conclusion, this study confirms that the biological response of calcium phosphates was affected by the presence of an alkaline layer on their surface. Thermally-treated α-TCP and β-TCP granules produced significantly fewer MNGCs and were significantly less degraded than non-thermally-treated α-TCP and β-TCP granules. Thermally treating α-TCP and β-TCP granules shifts the reaction from a foreign body reaction towards a physiological reaction by downregulating the number of induced MNGCs and enhancing degradation resistance.

    PEEK as a replacement for CoCrMo in knee prostheses: Pin-on-disc wear test of PEEK-on-polyethylene articulations

    Roman Heuberger, Christina Stöck, Jeannine Sahin, Lukas Eschbach
    Biotribology, Volume 27, September 2021
    Abstract

    The feasibility to use poly-ether-ether-ketone (PEEK) instead of CoCrMo for femoral condyles of knee prostheses was investigated in this pin-on-disc study. This replacement would hinder the release of the toxic elements Co, Cr and Mo and this possibly at lower production costs. In this preliminary pin-on-disc study, the wear of the pairings PEEK vs. ultra-high-molecular-weight polyethylene (UHMWPE) and PEEK vs. vitamin E containing crosslinked polyethylene (XLPE) was investigated in unidirectional and multidirectional wear tests.

    The articulating surfaces of the pins and discs were polished after the wear tests, while most of the initial toolmarks were removed. In addition, there were small scratches on the surfaces. Striations and protuberances were found on some of the UHMWPE samples.

    All wear factors were relatively small with less than 1 × 10−6 mm3/Nm. Due to the low wear, the resulting weight loss was highly affected by the soaking of the samples. This was especially the case for the discs due to their larger surface. Thus, the wear of the discs was not used for the comparisons. The wear factors for PEEK pins and XLPE pins were in the range of (0.05 to 0.06) × 10−6 mm3/Nm, both for unidirectional and multidirectional motion. The wear of the UHMWPE pins was with (0.07 ± 0.01) × 10−6 mm3/Nm slightly higher under unidirectional motion and with (0.28 ± 0.03) × 10−6 mm3/Nm four times higher under multidirectional motion.

    Thus, PEEK should be considered as an alternative to the CoCrMo alloy in knee prostheses, especially when used in combination with XLPE liners.

    , Tab enable
    (Tab id: module_17122664564493; Tab name:  2020 )

    Publications 2020

    A Novel Bioreactor System Capable of Simulating the In Vivo Conditions of Synovial Joints

    Adel Tekari, Veit Schmid, Joern Justiz, Reto Luginbuehl
    Tissue Engineering Part C: Methods, Vol. 26, 16 Dec 2020
    Abstract

    Any significant in vitro evaluation of cartilage tissue engineering and cartilage repair strategies has to be performed under the harsh conditions encountered in vivo within synovial joints. To this end, we have developed a novel automated physiological robot reactor system (PRRS) that is capable of recapitulating complex physiological motions and load patterns within an environment similar to that found in the human knee. The PRRS consists of a mechanical stimulation unit (MSU) and an automatic sample changer (ASC) within an environment control box in which the humidity, temperature, and gas composition are tightly regulated. The MSU has three linear (orthogonal) axes and one rotational degree of freedom (around the z-axis). The ASC provides space for up to 24 samples, which can be allocated to individual stimulation patterns. Cell-seeded scaffolds and ex vivo tissue culture systems were established to demonstrate the applicability of the PRRS to the investigation of the effect of load and environmental conditions on engineering and maintenance of articular cartilage in vitro. The bioreactor is a flexible system that has the potential to be applied for culturing connective tissues other than cartilage, such as bone and intervertebral disc tissue, even though the mechanical and environmental parameters are very different.

    Explicit finite element analysis can predict the mechanical response of conical implant press-fit in homogenized trabecular bone

    Marzieh Ovesy, Marcel Aeschlimann, Philippe K. Zysset
    Journal of Biomechanics, Volume 107, 23 June 2020
    Abstract

    Prediction of primary stability is a major challenge in the surgical planning of dental and orthopedic implants. Computational methods become attractive to estimate primary stability from clinical CT images, but implicit finite element analysis of implant press-fit faces convergence issues due to contact and highly distorted elements. This study aims to develop and validate an explicit finite element method to simulate the insertion and primary stability of a rigid implant in a deformable bone while accounting for damage occurring at the bone-implant interface. Accordingly, a press-fit experiment of a conical implant into predrilled bovine trabecular bone was designed and realized for six samples. A displacement-driven cyclic protocol was used to quantify the reaction force and stiffness of the bone-implant system. Homogenized finite element analyses of the experiments were performed by modeling contact with friction and converting an existing constitutive model with elasto-plasticity and damage of bone tissue to be applicable to an explicit time integration scheme where highly distorted elements get deleted. The computed reaction forces and unloading stiffnesses showed high correlations (R2 = 0.95 and R2 = 0.94) with the experiment. Friction between bone and implant exhibited a strong influence on both reaction force and stiffness. In conclusion, the developed explicit finite element approach with frictional contact and element deletion accounts properly for bone damage during press-fit and will help optimizing dental or orthopedic implant design towards maximal primary stability.

    Bone grafts and bone replacement material

    Marc Bohner, Berton Rahn
    Advanced Craniomaxillofacial Surgery, Chapter 1.3, Thieme, ISBN 9783132428393
    Abstract

    No abstract available.

    Validation of XRD phase quantification using semi-synthetic data

    Nicola Döbelin
    Powder Diffraction. 2020; 35(4): 262-275
    Abstract

    Validating phase quantification procedures of powder X-ray diffraction (XRD) data for an implementation in an ISO/IEC 17025 accredited environment has been challenging due to a general lack of suitable certified reference materials. The preparation of highly pure and crystalline reference materials and mixtures thereof may exceed the costs for a profitable and justifiable implementation. This study presents a method for the validation of XRD phase quantifications based on semi-synthetic datasets that reduces the effort for a full method validation drastically. Datasets of nearly pure reference substances are stripped of impurity signals and rescaled to 100% crystallinity, thus eliminating the need for the preparation of ultra-pure and -crystalline materials. The processed datasets are then combined numerically while preserving all sample- and instrument-characteristic features of the peak profile, thereby creating multi-phase diffraction patterns of precisely known composition. The number of compositions and repetitions is only limited by computational power and storage capacity. These datasets can be used as input files for the phase quantification procedure, in which statistical validation parameters such as precision, accuracy, linearity, and limits of detection and quantification can be determined from a statistically sound number of datasets and compositions.

    β-tricalcium phosphate for bone substitution: Synthesis and properties

    Marc Bohner, Bastien Le Gars Santoni, Nicola Döbelin
    Acta Biomaterialia, 19 June 2020
    Abstract

    β-tricalcium phosphate (β-TCP) is one the most used and potent synthetic bone graft substitute. It is not only osteoconductive, but also osteoinductive. These properties, combined with its cell-mediated resorption, allow full bone defects regeneration. Its clinical outcome is sometimes considered to be “unpredictable”, possibly due to a poor understanding of β-TCP physico-chemical properties: β-TCP crystallographic structure is not fully uncovered; recent results suggest that sintered β-TCP is coated with a Ca-rich alkaline phase; β-TCP apatite-forming ability and osteoinductivity may be enhanced by a hydrothermal treatment; β-TCP grain size and porosity are strongly modified by the presence of minute amounts of β-calcium pyrophosphate or hydroxyapatite impurities. The aim of the present article is to provide a critical, but still rather comprehensive review of the current state of knowledge on β-TCP, with a strong focus on its synthesis and physico-chemical properties, and their link to the in vivo response.

    Statement of significance
    The present review documents the richness, breadth, and interest of the research devoted to β-tricalcium phosphate (β-TCP). β-TCP is synthetic, osteoconductive, osteoinductive, and its resorption is cell-mediated, thus making it one of the most potent bone graft substitutes. This comprehensive review reveals that there are a number of aspects, such as surface chemistry, crystallography, or stoichiometry deviations, that are still poorly understood. As such, β-TCP is still an exciting scientific playground despite a 50 year long history and > 200 yearly publications.

    A thermodynamic approach to surface modification of calcium phosphate implants by phosphate evaporation and condensation

    Nicola Döbelin, Yassine Maazouz, Roman Heuberger, Marc Bohner, Ashley A. Armstrong, Amy J. Wagoner Johnson, Christoph Wanner
    Journal of the European Ceramic Society 40 (2020) 6095-6106
    Abstract

    It has been reported in the literature that thermal treatment of calcium phosphate ceramics chemically alters the surface composition by phosphate evaporation. To predict the compositional changes, we have developed a thermodynamic model for the evaporation of phosphorous species from CPP, TCP, HA, and TetCP. In an open atmosphere, the model predicts the formation of a surface layer consisting of a sequence of increasingly phosphate-depleted phases. In a closed system, the atmosphere reaches equilibrium with a single-phase surface layer. To verify our model, we performed a series of experiments which confirmed the predicted formation of phosphate-depleted surface layers. These experiments further demonstrated that controlled supersaturation of the atmosphere led to formation of a phosphate-enriched surface layer as a result of phosphate condensation. In conclusion, our thermodynamic model is capable of predicting the surface modification by phosphate evaporation and condensation of calcium phosphate phases during high-temperature processing in different environments.

    Shear resistance and composition of polyethylene protuberances from hip-simulating pin-on-disc wear tests

    Roman Heuberger, Emely Lea Bortel, Jorge Sague, Pablo Escuder, Jiri Nohava
    Biotribology Vol. 23, September 2020, 100139
    Abstract

    Protuberances on the surface of ultra-high-molecular-weight polyethylene (UHMWPE) pins were chemically and mechanically investigated in order to better understand the tribology of UHMWPE vs. CoCrMo, which is a typical material pairing for joint replacements.

    Pin-on-disc wear tests were performed using pins made of UHMWPE articulating against discs made of a CoCrMo alloy. Wear tests were performed using two different test fluids: a standard test liquid used for hip-simulator tests and a synthetic synovial fluid containing hyaluronic acid, albumin, immunoglobulin G, the phospholipid lecithin and additionally sodium azide to fight bacterial growth.

    After the wear tests, the pin surfaces exhibited scratches as well as protuberances with a pitting-like appearance. These protuberances, i.e. elevations protruding from the articulating surface, were 6 ± 3 μm high on the pins lubricated with the standard test liquid and 20 ± 5 μm high under the lubrication with the synthetic synovial fluid. Investigating the protuberances using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) showed that these were composed mainly of UHMWPE, together with amine groups from proteins. To our knowledge, the mechanical properties and namely shear resistance of these protuberances were investigated the first time. The hardness and the elastic modulus of the protuberances were similar to the bulk material, as revealed by nanoindentation. The shear resistance of the protuberances as measured by a nanoscratch test method was comparable or even higher than that of the bulk material.

    Grafting of calcium chelating functionalities onto PLA monofilament fiber surfaces

    Elias Mulky, Giuseppino Fortunato, Dirk Hegemann, Jorge Sague, Roman Heuberger, Martin Frenz
    Biointerphases 15, 011006 (2020)
    Abstract

    Polymer surface grafting is widely used in the field of bone regeneration to increase calcium phosphate (CaP) adhesion, with the intent of improving mechanical properties of CaP-polymer composite cements. Reinforcement can be achieved using multiple combined functional groups and/or complex surface geometries that, however, concurrently influence multiple effects such as wetting, roughness, and interfacial strengthening. This study focused on the influence of a chelating group, namely aspartic acid, on the adsorption of divalent ions such as Ba2+ or Ca2+ onto poly-l-lactic acid (PLA) films. The films were analyzed using contact angle measurements and X-ray photoelectron spectroscopy. The adsorption of CaP and its interfacial mechanical properties were investigated using functionalized PLA monofilaments whose surface roughness was analyzed using white light interferometry. Mechanical analysis was conducted by performing pull-out tests. The surfaces were analyzed using scanning electron microscopy and energy dispersive X-ray spectroscopy. Using aspartic acid as a chelating group resulted in a 50 % increased adsorption of barium, an almost threefold increase in calcium coverage of the fiber compared to the control group and a twofold increase in interfacial stiffness. No significant increase in interfacial strength was determined, most likely due to the weakness of the CaP matrix, which was partially visible as residues on the monofilaments in the postfracture imaging. This study shows the potential of surfaces functionalized with aspartic acid as a simple alternative to complex polypeptide based functional groups for the adsorption of divalent ions such as calcium on poly-lactic acid in bone regenerating applications.

    In vitro measurement of the chemical changes occurring within β-tricalcium phosphate bone graft substitutes

    Y. Maazouz, I. Rentsch, B. Lu, B. Le Gars Santoni, N. Döbelin, M. Bohner
    Acta Biomaterialia, Volume 102, 15 January 2020, Pages 440-457
    Abstract

    Several mechanisms proposed to explain the osteoinductive potential of calcium phosphates involve surface min­er­al­i­zation (“bioactivity”) and mention the occurrence of con­cen­tration gradients between the inner and the outer part of the implanted material. Determining the evolution of the local chemical environment occurring inside the pores of an implanted bone graft substitute (BGS) is therefore highly relevant. A quantitative and fast method was developed to measure the chemical changes occurring within the pores of β-Tricalcium Phosphate (β-TCP) granules incubated in a simulated body fluid. A factorial design of experiment was used to test the effect of particle size, specific surface area, microporosity, and purity of the β-TCP granules. Large pH, calcium and phosphate con­cen­tration changes were observed inside the BGS and lasted for several days. The kinetics and magnitude of these changes (up to 2 pH units) largely depended on the processing and properties of the granules. Interestingly, processing parameters that increased the kinetics and magnitude of the local chemical changes are parameters considered to favor calcium phosphate osteoinduction, suggesting that the model might be useful to predict the osteoinductive potential of BGSs.

    Statement of significance

    Recent results suggest that in situ mineralization of biomaterials (polymers, ceramics, metals) might be key in their ability to trigger ectopic bone formation. This is the reason why the effect on in situ mineralization of various synthesis parameters of β-tricalcium phosphate granules was studied (size, microporosity, specific surface area, and Ca/P molar ratio). To the best of our knowledge, this is the first article devoted to the chemical changes occurring within the pores of a bone graft substitute. We believe that the manuscript will prove to be highly important in the design and mechanistic understanding of drug-free osteoinductive biomaterials.